Design Code Development in EERA JPNM: work done and future needs

MatISSE/JPNM workshop on cross-cutting issues in structural materials R&D for future energy systems 25-26 November 2015, Petten, NL

K-F Nilsson, JPNM Sub-programme coordinator
JRC, Institute for Energy and Transport
Karl-fredrik.nilsson@ec.europa.eu

www.eera-set.eu

EERA is an official part of the EU SET-Plan.
http://setis.ec.europa.eu/
- EERA JPNM support ESNII reactors
 - Objectives
 - General requirements
 - Materials

 - Priorities
 - Work done and achievements

- Design Code related Work 2016 - 2020
 - Priorities
 - Planned Activities (Pilot Projects)

- Conclusions
Objectives

• **Support Design, Licensing and Construction of ESNII prototypes and demonstrators**
 – MYRRHA, ASTRID, ALFRED and ALLEGRO

 Short-term perspective! 2025-2030

• **Commercially available nuclear materials** whose safe performance needs demonstration for the harsh Gen IV conditions
 – austenitic and ferritic-martensitic steels
 – nickel-based super alloys

Work Programme is based on engineering priorities from reactor designers and developers
Why and how?

- **Why use "commercial" nuclear materials?**
 - Industrial experience and qualified for nuclear applications
 - Cost low and predictable;

- **But we need to demonstrate that these materials and components operate safely in harsher environment**
 - Resist higher temperature;
 - Resist higher irradiation levels;
 - Resistant to degradation from coolant;
 - Design life > 60 years
 - Load-following.
Why and how?

• **Work is primarily pre-normative research:**
 - Screening of candidate materials;
 - **Updated Design Rules and Codes.**
 - Development Test Procedures;
AFCEN RCC-MRx Design Code and R5/R6 Assessment Code

• RCC-MRx is the selected Design Code for the ESNII reactors
• RCC-MRx developed for SFR and Experimental Reactors
• R5/R6 Assessment Code developed in the UK
General Requirements supported by Design Codes

• Reactor safety
 • at least same level as Gen III+
 • Post-Fukushima: Increased demand to demonstrate safety under accident conditions

• Overall Cost
 • Efficient licensing
 • Components (material, size, design, fabrication)
 • Maintenance
 • Reduce undue conservatism
 • Operational life
IAEA Safety Standards Safety of Nuclear Power Plants: Design Specific Safety Requirements No. SSR-2/1
4.16. Where an unproven design or feature is introduced or where there is a departure from an established engineering practice, safety shall be demonstrated by means of appropriate supporting research programmes, performance tests with specific acceptance criteria or the examination of operating experience from other relevant applications.
Work programme 2011-15

• Emphasis on P91 Ferritic-Martensitic Steel
 • Good thermal fatigue resistance (low thermal expansion and high heat conductivity)
 • But low ductility, limited hardening and cyclic softening, weldability?

• Design Code Areas:
 o High Temperature (ratcheting, creep-fatigue, negligible creep) ratcheting)
 o Weld procedures and coefficients
 o 60-years design life (thermal ageing)
Key degradation mechanisms

- High temperature degradation (ratcheting, creep, creep-fatigue) limit the life of nuclear components.
- We need models for basic understanding as well as engineering models.

ACS:
- 316L(N)
- Tnom: 545°C
- Damage modes: Creep-fatigue, thermal stripping

Hot secondary circuit:
- 316L(N)
- Tnom: 525°C
- Damage modes: Creep-fatigue, buckling

Primary Vessel:
- 316L(N)
- Tnom: 395°C
- Damage modes: Ratchetting, buckling, Creep-fatigue

Inner vessel:
- 316L(N)
- Tnom: 395-545°C
- Damage modes: Ratchetting, buckling, Creep-fatigue

Steam Generator:
- 9Cr or aligage 800
- Tnom: 525°C (Na) – 490°C (steam)
- Damage modes: Excessive deformation, Ratchetting, creep-fatigue, Buckling
- Tubes: corrosion and buckling

www.fp7-matisse.eu
Ratcheting P91

- Ratcheting is accumulated plastic (and creep) cyclic deformation

- New Proposed Design Rules for ratchetting for P91
 - P: primary load with resulting force that can give plastic collapse
 - DQ: cyclic secondary stress (typically thermal)
 - Peff: load related to cumulative strain
 - Efficiency diagram shows the allowable loads
 - The higher ratcheting of P91 than 316L is manifested by a reduction of the efficiency diagramme
Creep-fatigue and negligible creep

- Creep-fatigue
 - Interaction Diagramme in RCC-MRX provides sufficient but overly conservatism and low accuracy
 - Alternative simplified methods proposed (see S. Holmström)

Experimental points creep-fatigue interaction diagramme

Predicted vs. measured creep-fatigue life
Negligible creep

- Negligible creep
 - Updated proposal based on Wilshire model
 - Can be adjusted to different values of acceptable strain

Normalized creep rupture curves

Negligible creep and creep rupture curves P91
Weld fatigue factors for P91

\[
J_f = \frac{(\Delta \varepsilon_{\text{weld}})^{\exp}}{(\Delta \varepsilon_{\text{MB}})^{\exp}}
\]

\[
\Delta \varepsilon \leq 0.25 \quad \Rightarrow \quad J_f = 1.35
\]

(failure in BM)

\[
0.25 \leq \Delta \varepsilon \leq 0.55 \quad \Rightarrow \quad J_f = 1.35 + \frac{2}{3}(\Delta \varepsilon - 0.25)
\]

(transition zone)

\[
0.55 < \Delta \varepsilon \quad \Rightarrow \quad J_f = 1.55
\]

(failure in HAZ)

Computed strain evolution in weld

Fatigue curves weld and base material
Directions for Work Programme 2016 -

• Emphasis on austenitic steels: 316L(N), 316L;
• Methodology* to predict and mitigate material degradation in lead and lead-bismuth
 - Corrosion, liquid-metal embrittlement, material data
• Methodology 60 years Design-Life
• Methodology life assessment welded components, e.g type IV cracking
 - Residual stresses, material properties of welds, weld defects, weld procedures,

* Methodology = Design Codes, Assessment Codes and Test Procedures
Directions for Work Programme 2016 -

• High-temperature: degradation and life assessment
 – Creep-fatigue, thermal fatigue, thermal buckling (MATTER iso-thermal conditions), long-term material data, non-isothermal

• Development of innovative miniature tests for material characterization
 – Small Punch Test, nano-indentation,

• Safety margins beyond design cases
 – High temperature material properties, Dynamic loads, nonlinear deformation, rate effects, material data, fuel-pin

* Methodology = Design Codes, Assessment Codes and Test Procedures
• Lead, as opposed to sodium, induces strong environmental effects (embrittlement, corrosion, erosion);

• The chemical composition of the coolant has a large impact;

• Limited feedback experience of HLM coolants.

• Implicit Code Assumptions
 • The chosen material has the same behaviour as in air, except for depletion of corrosion allowance;
 • ISI will detect degradation when it becomes critical;
 • Composition stays within allowable range in the entire system.
Compatibility HLM coolant & structure

• **Approach 1: Immunity**
 - Demonstrate "immunity" and Implicit Code Assumptions
 - P91 ruled out due to LME
 - 316L OK?, welds?
 - Requires extensive qualification programme

• **Approach 2: Degradation allowance**
 - Accept some degradation effects but ensure sufficient margins through reduction factors, inspection programmes
 - Requires substantial associated pre-normative R&D

General problem: lack of long-term data at operational conditions

![Graph showing fatigue endurance of 316L tested in LBE at 300 and 400 °C, compared to air tests conducted at RT.](image)

Fig. 6. Fatigue endurance of 316L tested in LBE at 300 and 400 °C, compared to air tests conducted at RT.

Pierre Marmy a,*, Xing Gong a,b

60+-Years Design Life

- Design Codes assumes 40 years Design Life but future reactors should operate for at least 60 years.

- 60-years operation life must be based on "60 years Design" and Plant Life Management.

- For the 60+ year Design Life all relevant slow processes and their interactions need to be taken into account:
 - Creep,
 - Fatigue,
 - Irradiation,
 - Thermal ageing,
 - Environmental.

- The main issue is long-term material properties. The "rule of thumb" is that an acceleration factor of 3 is acceptable → 20 years test needed for 60 years design life!
How get relevant material data for 60+ design life?

- Testing of materials exposed to long-term operational conditions
- Extrapolation of accelerated tests. This requires that:
 - The deformation mechanism and microstructural evolution is the same in the accelerated test as the operational conditions, or at least
 - We can predict the change in deformation mechanism and microstructural evolution
 - Integration of physics-based models at different and time scales
Conclusions

• The development of Design Codes and Assessment is essential for the Design of new reactors and hence key objective for EERA JPNM

• The future European innovative reactors will use RCC-MRx as their design code

• The design codes need to be further developed to address the harsher conditions, stricter safety requirements and cost reduction
Conclusions

• The Work Programme from 2016 is an evolution of the previous work.

• Key areas are:
 • HLM degradation and life assessment
 • 60-years Design-life
 • Welded components

• Other areas include:
 – Miniature specimens
 – High temperature life assessment

• The concrete work plans for most of the areas have been worked out as Pilot Projects
Thank you for listening
Any question?